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A B S T R A C T   

Delineating urban functional use plays a key role in understanding urban dynamics, evaluating planning stra-
tegies and supporting policymaking. In recent years, Points of Interest (POI) data, with precise geolocation and 
detailed attributes, have become the primary data source for exploring urban functional use from a bottom-up 
perspective, using local, highly disaggregated, big datasets. Previous studies using POI data have given insuffi-
cient consideration to the relationship among POI classes in the spatial context, and have failed to provide a 
straightforward means by which to classify urban functional areas. This study proposes an approach for delin-
eating urban functional use at the scale of the Lower Layer Super Output Area (LSOA) in Greater London by 
integrating the Doc2Vec model, a neural network embedding method commonly used in natural language 
processing for vectoring words and documents from their context. In this study, the neural network vectorises 
both POI classes (‘Word’) and urban areas (‘Document’) based on their functional context by learning features 
from the spatial distribution of POIs in the city. Specifically, we first construct POI sequences based on the 
distribution of POI classes, and add their LSOA IDs as ‘document’ tags. By utilising these constructed POI–LSOA 
sequences, the Doc2Vec model trains the vectors of 574 POI classes (word vectors) and 4836 LSOAs (document 
vectors). The vectors of POI classes are then used in calculating the functional similarity scores based on their 
cosine distance, with the vectors of LSOAs grouped into clusters (i.e., functional areas) via the k-means clustering 
algorithm. We also identify latent functions in each cluster of LSOAs by performing topic modelling and 
enrichment factor. Compared with TF–IDF, LDA and Word2Vec models, the Doc2Vec model obtains the highest 
accuracy when classifying functional areas. This study proposes a straightforward approach in which the model 
directly trains vectors for urban areas, subsequently using them to classify urban functional areas. By employing 
the enhanced neural network model with low-cost and ubiquitous POI datasets, this study provides a potential 
tool with which to monitor urban dynamics in a timely and adaptive manner, thereby providing enhanced, data- 
driven support to urban planning, development and management.   

1. Introduction 

Scholars have studied the topic of urban functional use for decades, 
especially in the contexts of urban planning and geographical informa-
tion science (Crooks et al., 2015; Joshi et al., 2016; Lynch, 1960). Urban 
functional use not only describes the configuration of the physical 
environment (e.g., buildings, spaces and facilities), but also reflects the 
socio-economic patterns of human activity at the collective level, which 
influences many urban processes from land-use regulations (e.g., the 
designation of permitted use of land) (Frias-Martinez & Frias-Martinez, 
2014) to urban vibrancy (Yue et al., 2017). Understanding urban func-
tional use is critical for planners and policymakers, especially in flexible 

planning systems where the uses of land and buildings change dynam-
ically. For example, in England, the Use Classes Order (i.e., the legal 
framework that defines how land and buildings change from one class to 
another) was recently deregulated in order to introduce flexibility, 
which generated a surge in the conversion of uses without planning 
permission (Barton & Grimwood, 2019; Ferm, Clifford, Canelas, & Liv-
ingstone, 2020). In practice within this context, delineating urban 
functional use offers a more nuanced understanding of how dis-
aggregated land and building uses (e.g., offices, restaurants and so on) 
can be mapped by employing a bottom-up approach, and how the 
functional use of urban areas can be tracked. This approach allows for 
tracking, in near real-time, of what is happening with extended planning 
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development rights, such as office-to-residential conversions or flexible 
use permission of commercial properties in cities such as London. It can 
also offer a tool to monitor the dynamic demand for urban facilities and 
services introduced by changes in the Use Classes Order, thereby 
assisting in solving planning-related issues such as refuse collection, 
parking supply and local taxation. The need for such tools is particularly 
important in flexible planning systems. 

Traditionally, understanding urban functional use been heavily 
dependent on the identification of land-cover and land-use from remote 
sensing data (Forestier, Puissant, Wemmert, & Gançarski, 2012). How-
ever, this method only classifies urban land by its geographical features, 
neglecting the socio-economic characteristics of land use (Gao, Jano-
wicz, & Couclelis, 2017). It thus remains an insufficient method for 
exploring contemporary cities where urban land use is highly mixed and 
subject to rapid, dynamic changes. In the era of big data, new urban data 
sources such as social media check-ins, points of interest and mobile 
phone data provide disaggregated and fine-scale information about 
urban functional use (Crooks et al., 2015; Liu et al., 2015). In the urban 
context, POI data are a collection of location points such as commercial 
properties, offices, public spaces, transportation facilities, and so forth 
comprising detailed information including geospatial location, name, 
postcode, address, coordinates and so on (Elwood, Goodchild, & Sui, 
2012). POI data define the first-hand account of human activities and 
building uses, providing opportunities for researchers to explore the 
distribution of urban functions from a bottom-up perspective (Niu & 
Silva, 2020). As this type of data records accurate geolocation and 
specific uses of urban spaces and buildings at a very granular level, they 
are used to infer urban functional use by following a bottom-up 
approach to data mining. Particularly because there are many mixed- 
use buildings, POI data provide the finest level of building utilisation 
data that can be aggregated and categorised according to urban func-
tions at a different scale. For instance, a commercial building might have 
a clothing shop on the ground floor and a nightclub on the upper floor. 
With POI data, we can identify the building’s commercial use as two 
seperate functions, Clothing and Nightclubs, defined by their POI classes. 
Despite the disaggregated and fine-level information of functional use, 
POI data are also characterised by large volume and high dimension-
ality, presenting challenges in data processing and interpretation. Pre-
vious studies have introduced text mining techniques such as term 
frequency-inverse document frequency (TF–IDF) and latent Dirichlet 
allocation (LDA) to infer urban functional use from collections of POIs 
(Gao et al., 2017; Liu et al., 2017; Yuan et al., 2015). The drawback of 
these frequency-based methods is that they only take into account the 
number of POIs, without considering the spatial relationship among 
POIs in cities. To solve this issue, a group of studies have integrated 
neural word embedding models with POI data to classify urban areas by 
their functional use (Hu et al., 2020; Yao et al., 2017; Zhai et al., 2019). 

The embedding method trains vectors of POI classes from their 
spatial context (i.e., the surrounding POI classes) and computes vector 
representations for urban areas based on the local combination of 
different POIs. Due to the fact that these low-dimensional vectors of 
urban areas extract information from POI classes (i.e., the finest-level of 
building utilisation data), the cosine distance (i.e., the similarity metric) 
between these vectors can be utilised for measuring the functional 
similarity between urban areas. However, there are gaps between the 
neural word embedding model and its applications in delineating urban 
functional use. First, few studies take full advantage of vector repre-
sentations of POI classes when revealing the relationship between high- 
dimensional POI classes. Previous studies overlook the models potential 
for measuring functional similarities among hundreds of POI classes in 
the city, which is important if seeking to understand how different POI 
classes are configured as urban functions and how certain POI classes 
tend to cluster more easily than others. When classifying urban func-
tional areas, it is important to note that as the Word2Vec model adopted 
by previous studies only trains vectors of POI classes, researchers have to 
calculate the vectors of urban areas using an average, or a weighted 

average, of the vectors of POIs in those areas. This rigorous com-
pounding process fails to capture the spatial heterogeneity among urban 
areas because some areas may share the same ratios of different POI 
classes, but differ in terms of the spatial arrangement of the POIs. 

To fill this gap, this study integrates the Doc2Vec model, an exten-
sion of Word2Vec developed by Le and Mikolov (2014), with POI data to 
train vectors of urban areas directly, as well as training the vectors of 
POI classes through the neural network. This proposed method considers 
spatial heterogeneity during the training process for vectors of urban 
areas, assisting in substantially improved identification of urban func-
tional areas. Simultaneously, because the Doc2Vec model provides a 
direct means of obtaining vectors for urban areas, this study also con-
tributes to the existing academic literature by proposing a more efficient 
way to delineate urban functional use, relative to previous studies. 

Section 2 of this paper presents a literature review regarding POI 
data, previous methods, and the research trends in this area. Section 3 
introduces the case study and its datasets. Section 4 describes the 
methodology, including the pre-processing of POI data, training with the 
Doc2Vec model, analysis of the vectors of POIs and urban areas, and 
model evaluation. Section 5 presents the result for urban functional 
similarity between POI classes and urban functional areas in Greater 
London. Finally, Section 6 discusses the findings, implications and lim-
itations of this study, before offering suggestions for future research. 

2. Literature review 

2.1. Urban functional use detection with crowdsourced data 

Scholars typically conceptualise urban functional use based on the 
purposes of urban spaces by linking the preferences of human activities 
and the configurations of land or building use (Crooks et al., 2015; 
Lynch, 1960). In exploring urban functional use, researchers have 
traditionally employed remote sensing data to classify urban land use 
and monitor the dynamic change thereof (Joshi et al., 2016; Ma et al., 
2019). Although remote sensing data provide a valuable source for 
extracting the physical characteristics of the land surface, they are less 
helpful in delineating urban functional use; namely, the collective ac-
tivities in urban spaces and the socio-economic environment formed by 
these activities (Gao et al., 2017). In recent years, with the development 
of information and communications technology and the proliferation of 
location-based services (LBS), crowdsourced data (social media, points 
of interest and geotagged images) have demonstrated potential in un-
derstanding urban activities and the use (or multiple uses) of buildings, 
often with high levels of granularity and fine-temporal resolution 
(Goodchild, 2007; Niu & Silva, 2020). In exploring urban functional use, 
Crooks et al. (2015) highlights the notable contribution of crowdsourced 
data that provide primary accounts of urban form and function. In this 
vein, applications of crowdsourced data can be found in exploring urban 
function-related topics such as the detection of communities (Cranshaw, 
Schwartz, Hong, & Sadeh, 2012; Hasan & Ukkusuri, 2015), identifica-
tion of urban functional areas (Chen et al., 2017; Liu et al., 2017; Yuan, 
Zheng, & Xie, 2012), and in measurements of urban function mixture 
(Li, Shen, & Hao, 2016; Yue et al., 2017). 

Among the types of crowdsourced data, ubiquitous POI data are 
commonly utilised in studies of urban functional use. Previous studies 
have evaluated the capability of POI data for extracting urban functions 
from different sources (Chen, Arribas-Bel, & Singleton, 2019; Gao et al., 
2017; Jiang, Alves, Rodrigues, Ferreira, & Pereira, 2015; Song, Lin, Li, & 
Prishchepov, 2018). There are two primary sources of data. The first 
includes POI databases that provide a location-based directory, 
including national mapping agencies (e.g., Ordnance Survey UK), open- 
source platforms (e.g., OpenStreetMap1) and business platforms (e.g., 

1 www.openstreetmap.org 
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Google Places2 and Baidu Map3). These POI databases provide a wide 
range of types of POIs, including public services and privately-owned 
businesses, services and facilities. The second comes from location- 
based social networking data, or check-ins data, on platforms such as 
Foursquare, Yelp and Twitter. Although this type of data primarily links 
human activities with places, it has limited coverage in POI categories 
(mainly business- and leisure-related POIs) and spatial distribution (only 
covering particularly vibrant areas). Considering the diversity and 
complexity of POI sources, previous studies have developed several 
common requirements for POI data, especially for urban functional use 
exploration. First, the POI dataset should have a unified taxonomy that 
clearly defines the classification of POI classes. For instance, POI data 
from the Ordnance Survey (UK) have nine groups POI groups for 616 
POI classes, including Accommodation, Eating and Drinking; Commercial 
Services; Attractions and so on (see Appendix A). It would be problematic 
to code different POIs into classes without a robust POI taxonomy, 
resulting in ambiguity when aggregating urban functional uses for urban 
areas (Jiang et al., 2015). POI data must also have broad spatial and 
categorical coverage in the study areas, so as to ensure it can accurately 
reflect heterogeneity within and among different areas. For example, the 
POI dataset derived from social media platforms (such as Yelp) provides 
more catering and leisure POIs in those vibrant areas, but fewer POIs of 
other types, such as businesses and industry, especially in the urban 
periphery. Therefore, extracting urban functions from this sampled POI 
dataset (i.e., limited coverage in both space and POI categories) may 
only reveal the patterns of commercial and entertainment functions in 
the central area of the city, thus impeding a comprehensive urban 
analysis. 

2.2. Mining POI data with natural language processing techniques 

Like many other types of new urban data, POI data are characterised 
by the large volume and high dimensionality that traditional methods 
mostly fail to incorporate and accommodate. Over recent decades, re-
searchers have attempted to employ new techniques, such as natural 
language processing (NLP), in order to extract urban functional use. As 
with natural languages, the rank-frequency distribution of POI data 
follows Zipf’s law (an empirical power law for rank and frequency), 
which states that the rank of a POI class is inversely proportional to its 
frequency, as demonstrated in Eq. (1) (Gabaix, 1999; Soo, 2005). In 
other words, it reveals that only a small number of POI classes appear 
most frequently in cities, while others emerge only occasionally. 

f∝
1
r

(1) 

Yuan et al. (2012) introduced a topic-based inference model to 
identify urban functional areas with POI data using LDA topic model-
ling, similar to how researchers use the model to extract semantic topics 
from documents. Similarly, Gao et al. (2017) utilised LDA topic 
modelling to classify urban functional regions with POI and social media 
data. Xing and Meng (2018) made comparable attempts to extract se-
mantics from POI data. Although LDA topic modelling helps to explore 
the hidden structure of functional semantics in POI data, this topic 
model is built on an approach known as the ‘bag of words’ model, which 
disregards grammar and word order, but maintains the word counts. In 
the case of POI data mining, LDA topic modelling retains the occurrences 
of POIs across the whole city, but disregards spatial relationships be-
tween POIs. 

2.3. Neural network embedding: from Word2Vec to Doc2Vec 

Neural network embedding offers a feasible solution to fill this gap, 

taking into account spatial relationships between POIs when delineating 
urban functional use. Neural network embedding, such as the Word2Vec 
model, refers to feature learning techniques based on a neural network 
in which words or terms in corpora (i.e., collections of text) are mapped 
to low-dimensional vectors (Mikolov, Sutskever, Chen, Corrado, & 
Dean, 2013). The output vectors with real numbers represent words and 
their common context, which researchers can use to explore the se-
mantic relations in a continuous vector space (Li & Yang, 2018). The 
integration of neural word embedding with POI data treats POI classes as 
‘words’, POI sequences as ‘sentences’, regions/districts as ‘paragraphs’ 
and cities as the ‘documents’. In this approach, the functions in urban 
areas hidden in the POI dataset are equivalent, to some extent, to se-
mantic topics hidden in the text corpora. Most significantly, the spatial 
arrangement of POIs can be regarded as equivalent to the syntactic order 
of words in sentences, meaning that the spatial context of POIs in urban 
areas can be learned as a constituent element of vectors, an inclusion 
which is not able to be made with frequency-based methods such as LDA 
and TF–IDF models. 

Yao et al. (2017) first used the Word2Vec model, developed by 
Mikolov, Chen, Corrado, and Dean (2013), to train vectors of POI classes 
with POI sequences built by ascertaining the shortest path in traffic 
analysis zones (TAZs). With POI vectors, vectors for all TAZs can then be 
calculated and utilised to identify urban land-use types. Based on this 
work, Zhai et al. (2019) deployed the Place2Vec model and applied it to 
the neighbourhood level. The main difference in approach is that the 
Place2Vec model adopts the nearest neighbour method for POI se-
quences in neighbourhood areas, and constructs (POIcentre, POIcontext) 
pairs. This method considers the first law of geography, namely that 
nearby POIs are more related than distant POIs. Apart from this 
distinction, the Place2Vec model essentially mirrors the Word2Vec 
model. Following a similar approach, this study aggregates POI vectors 
to generate vectors specific to urban areas, which then serve to identify 
urban functional areas by subsequent clustering. The recent study by Hu 
et al. (2020) also employed the Word2Vec model with POI sequences, 
constructed by POI centre-context pairs and classifying urban functional 
areas on a 1 km-by-1 km grid. However, these studies all build on the 
Word2Vec model that only trains vectors for POI classes, meaning that 
they had to calculate a compound vector to represent urban areas (i.e., 
spatial units such as TAZ, neighbourhood zones and grids) for later 
identification of urban functional areas through clustering. The problem 
is that researchers have calculated compound vectors by using either an 
average or a weighted average of all vectors of POIs that appear in each 
area. This rigorous compounding process ultimately fails to capture the 
spatial heterogeneity among urban areas because some areas may share 
a similar POI configuration (i.e., the same count in each POI category) 
but differ in the spatial arrangement of those POIs. By contrast, the 
Doc2Vec model, an extension of the Word2Vec model developed by Le 
and Mikolov (2014), uses the neural network to train additional vectors 
for paragraphs, which can be utilised to specifically avoid the afore-
mentioned problem and in directly training vectors for urban areas 
directly. Although there have been some applications of the Doc2Vec 
model in the urban context, few of them focus on detecting urban 
functional use with POI data (Li, Jin, & Dong, 2019; Wang et al., 2017). 

3. Study area and data 

The study area covers Greater London as the extent is great enough to 
demonstrate the diversity of urban functional uses (see Fig. 1). Ac-
cording to the Census Output Area population estimates (mid-2019) by 
the Office of National Statistics (ONS), 8.96 million people live in the 
region of Greater London, an area of 1572 km2. As one of the largest 
megacities in the world, Greater London needs to monitor its urban 
dynamics, including urban functional uses, to accomplish smart and 
adaptive urban management. 

The POI dataset utilised for this research derives from the Ordnance 
Survey, the national mapping service for Great Britain. This dataset was 

2 www.google.com/maps  
3 map.baidu.com 

H. Niu and E.A. Silva                                                                                                                                                                                                                          

http://www.google.com/maps
http://map.baidu.com


Computers, Environment and Urban Systems 88 (2021) 101651

4

last updated in March 2019, comprising 420,559 POIs for the London 
metropolitan area. Each record of a POI has numerous attributes, 
including a unique reference number, name, PointX classification code, 
geographic coordinates, address detail, street name, postcode, admin-
istrative boundary and other specific identifiers. The PointX classifica-
tion code (POI classes), referring to the specific use of POI, contains an 
eight-digit number consisting of a two-digit group code, a two-digit 
category code and a four-digit class code, which assists with classifica-
tion of POIs by their functions at different levels. The POI classification 
scheme is a three-tier hierarchy, including nine groups, 52 categories 
and 616 classes with codes (see POI Groups and Categories in 
Appendix A). This study excludes some POI class codes, such as infra-
structure features (electricity, gas and fire safety), industrial features 
(chimneys, pipelines, tanks, and so forth) and transport facilities that are 
unrelated to the functional use of a building or space in the city, leaving 
a total of 574 POI classes. Fig. 2 illustrates the distribution of the dataset. 
The rank of POI classes and their frequency follows Zipf’s law, in which a 
few POI classes account for a large proportion of all the POIs in Greater 
London. The ten most frequent POI categories are Bus Stops; Hair and 
Beauty Services; Convenience Stores and Independent Supermarkets; Fast 
Food and Takeaway Outlets; Restaurants; Cafes, Snack Bars and Tea Rooms; 

Cash Machines; Clothing; Property Sales; Pubs, Bars and Inns. 

4. Methodology 

This section first describes the preparation of the data for POI se-
quences with urban area tags. In order select the optimal unit of analysis, 
consideration is given to how scale and zone affect the spatial aggre-
gation of POIs. Subsequently, this section introduces the Doc2Vec model 
for training vectors for POI classes and urban areas, followed by the 
method of calculating the functional similarity between POIs and the 
methods of classifying and annotating urban functional areas. The final 
part explains the overall evaluation of the model (Fig. 3). 

4.1. Constructing POI sequences tagged with urban areas 

Unlike text corpora following a certain syntactic rule (i.e., how 
words are organised in a sentence), POIs in urban spaces essentially have 
no sequential order. This lack of order means that researchers must 
manually construct POI data as sequences, in order render them as valid 
inputs for the model. In practice, Yao et al. (2017) built a POI corpus 
based on traffic analysis zones and implemented the shortest path 

Fig. 1. The case study area: Greater London. The grey dots refer to locations of 420,559 POIs updated in March 2019 by the Ordnance Survey.  

Fig. 2. Rank-frequency plot for 574 POI classes in Greater London.  
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algorithm to construct POI sequential orders, where the length of path 
segments referred to the Euclidean distance within POI pairs. Zhai et al. 
(2019) later challenged this approach by arguing that sequences 
generated by the shortest path sorted all POIs in the traffic analysis zone 
with connecting points only once, which is not convincing when seeking 
to explore the spatial relationship between POIs. Zhai et al. (2019) 
adopted the nearest neighbour method for each POI to create (POIcenter, 
POIcontext) pairs, in which distance decay augmented the spatial context. 
However, this method risks oversampling POI sequences in areas with a 
high density of POIs, resulting in an overfitting problem for the model. 

To avoid the oversampling issue, this study utilises generated 
random points with a minimal interval to construct POI sequences in 
Greater London. To align with the POI density in the city, these random 
points are generated along with the road network (excluding unclassi-
fied roads). Setting the distance interval between any two random points 
at 50 m produces a structured set of random points R{r1, r2,…, ri,…, rn} 
with the maximum size being 201,000. Subsequently, for each random 

point ri, we search its accessible POIs within 200 m and thus obtain an 
accessible POI set Si. By computing the distance for all of the pairs be-
tween the central random point and POIs within Si, we can use the 
distance as a reference by which build a sequentially ordered POI list Li 
= [poi1,poi2,poi3, .. poin], where i refers to the index of the random point, 
n is the number of accessible POIs around the random point ri and ele-
ments in the list refer to the POI classes. The left part of Fig. 4 illustrates 
all the lines between random points and their accessible POIs where 
colours are assigned by random point ID. The right part of Fig. 4 shows a 
single POI sequence constructed for random point i with a 200-m buffer. 
After constructing POI sequences, we retain only the POIs sequences 
with lengths which are greater than three; this is to avoid the sparse 
meaning and randomness produced by short POI sequences. 

The most significant difference between Word2Vec and Doc2Vec is 
that, in the Doc2Vec model, each sentence can be tagged by its para-
graph tag. This enables it to be later mapped into vectors representing 
the paragraphs. When applying the Doc2Vec model to POI sequences, 

Fig. 3. Flowchart of the methodology.  

Fig. 4. POI sequences construction in Greater London. Left: Constructed POI sequences with random points on the road network of Greater London. Right: Illus-
tration of a single POI sequence constructed for random point ri with a 200-m buffer. 
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the paragraph tag refer to an administrative district, a postcode area, 
part of a grid, a TAZ or any other spatial unit where POI sequences exist. 
During the training process, vectors of paragraph tags are generated 
from the semantics of POIs shared within their units, and can be served 
as the reference to classify urban functional areas. 

4.2. Selecting the optimal aggregation level 

As the model extracts information about urban functional use from 
point-based data (POIs), the effects of the modifiable areal unit problem 
(MAUP) must be considered. When researchers aggregate spatial phe-
nomena from points data into areas, MAUP can occur because results 
can be impacted both by the shape (zoning effects) and the size (scale 
effects) of the analysis units (Openshaw, 1983; Viegas, Martinez, & 
Silva, 2009). To select the optimal aggregation level for examining 
urban function from POI data, we compared two types of zoning 
methods (UK census units and grid) at three levels of scale. The UK 
census units, including OA (output area), LSOA (lower layer super 
output area) and MSOA (middle layer super output area), are geospatial 
statistical units built from postcodes, with standardised populations and 
household sizes. For example, OA units typically contain 100 people, 
while LSOAs have an average population of around 1500. We also 
applied three sizes of grid (200 m, 500 m, 1000 m) corresponding to the 
median areas of OA, LSOA and MSOA, respectively. We used three in-
dicators, including POI class diversity, richness, and POI density, to 
compare the six analytical units. Table 1 presents the description of 
indicators and the related effects. 

To examine the scale effect, we measured POI class richness and 
diversity for both grid-based and census units at three levels. Fig. 5 
shows that small units in scales GRID200 and OA have a greater number 
of low outliers (see the number of NaN values shown in Table 2) and a 
low mean of the diversity indices (1.33 and 1.57, respectively). When 
the scale size increases, the mean and median of the diversity and 
richness indexes (GRID500 and LSOA) are greater, because the wider 
extent includes more areas with varying functions. However, the density 
function distribution for GRID1000 and MSOA is left-skewed, with a 
notably high mean and median of diversity index. This would increase 
the difficulty of extracting urban functional use because the units 
include too much POI information (high entropy in information theory). 
For zoning effects, we compared the POI density of units between grids 
and census units (see Fig. 6). Table 2 demonstrates that grid-based units 
have more NaN values than census units, especially at the smallest scale. 
Compared with larger scales, GRID500 and GRID1000 had lower POI 
densities than LSOA and MSOA, respectively. This is because the grid 
partition method generates more units than the geostatistical method in 
outer London, where there are fewer POIs. By synthesising both scale 
and zoning effects of the different analytical units with POIs, we chose 
LSOA (the census units at the middle scale) as the optimal unit of 
analysis to aggregate urban functional use from POI data. 

All POI sequences of Li generated in the last step by LSOA units were 

tagged, marked as a tag set T{t1, t2,…, tj,…, tm}. By spatially combining 
random points and the LSOA layer, each POI sequence receives an LSOA 
ID for the area in which the central random point is located. This process 
produces a tagged POI sequence STi = [tj,poi1,poi2,poi3,…poin] where i 
refers to the ID of the random point and j refers to the LSOA ID. 

4.3. Training vectors for POI classes and urban areas with Doc2Vec 
model 

The neural network architectures of the Doc2Vec model, and their 
training process, are similar to those in the Word2Vec model. The 
Doc2Vec model has two neural network architectures: the Bag of Words 
version of Paragraph Vector (PV-DBOW) and the Distributed Memory 
version of Paragraph Vector (PV-DM) (Le & Mikolov, 2014). The PV- 
DBOW model predicts POI classes using a spatial tag (the paragraph 
tag), while the PV-DM model uses context POI classes to predict the 
central POI class. In this study, we employ the PV-DM model that takes 
the tagged POI sequences ST as the input. Two types of vectors can be 
learned in the model. The first is the ‘word vector’ type, which repre-
sents vectors for POI classes in the POI sequences ST. The second is 
‘paragraph vectors’ type, which represents urban areas tagged in set T. 
The training process of PV-DM for POI classes (word vector) is based on 
the CBOW model in Word2Vec, which Goldberg and Levy (2014) and 
Rong (2016) thoroughly explain. In brief, the objective of the CBOW 
model is to predict a word, based on the surrounding words in a given 
context. The aim is to maximise the average of the log probability for 
predicting the central word (Eq. (2)). 

minimize J = − logP(wc|wc− m,…,wc− 1,wc+1,…,wc+m) (2) 

wc is the POI class of the central POI and m is the window size of the 
context. Eq. (3) calculates the probability of the central word by the 
context P(wc|wc− m,…,wc+m) where ̂v is the mean embedding vector over 
all context words, uc is the output vector of word wc, and V refers to the 
size of vocabulary (the number of POI classes). In the above equation, a 
score vector is initially generated by uT

c v̂, which is then mapped to a 
probability via the softmax function. With the probability estimate P(wc| 
wc− m,…,wc+m), the model uses cross-entropy to calculate the loss 
against the true distribution (i.e., one-hot word representation of the 
central word) (see Fig. 7, left). Stochastic gradient descent is used to 
minimise J, while updating input and output word representations. 

P(wc|wc− m,…,wc− 1,wc+1,…,wc+m) =
exp
(
uTc v̂
)

∑|V|

j=1
exp
(
uTj v̂
)

(3) 

Based on the CBOW model in Word2Vec, the PV-DM model addi-
tionally output a new embedding for the whole context (see Fig. 7, 
right). The variation of the input data is the additional document token. 
In the process of averaging all context words, the method uses this token 
to predict the subsequent word. For all POI sequences from the same 
LSOA, the represented document vector can perform as a shared mem-
ory of the functional context in this area. Considering the total number 
of POI classes (574), we chose a dimension size of 20 for vectors trained 
in the model. 

4.4. Functional similarity between POI classes with hierarchical clustering 

When the training process is complete, each POI class and LSOA is 
represented by a 20-dimensional vector. For any two POI classes, the 
similarity between them can be measured by the cosine similarity in the 
vector space using Eq. (4) where Ai and Bi are components of vectors A 
and B, respectively. A lower cosine distance indicates a higher similarity. 
The similarity score range is from − 1 to 1, where 1 indicates the same 
and − 1 signifies the opposite. 

Table 1 
Indicators for examining scale and zoning effects when aggregating POIs.  

Indicator Description Related Effects 

POI density Number of POIs per square metre: D 
= n/a, where n refers to the number 
of POIs and a refers to the area of unit 
of analysis. 

Zoning effects: indicates the 
intensity of urban 
functional use 

POI class 
richness 

Number of POI classes present in a 
unit: R = m, where m refers to the 
number of POI classes. 

Scale effects: indicates the 
degree of mixed-use 

POI class 
diversity 

The weighted geometric mean of the 
POI classes’ proportional 
abundances. The index is calculated 
by Shannon’s Diversity Index: SDI =
−
∑

i=1
m (Pi ln Pi), where pi refers to the 

proportion of type ith POI class 

Scale effects: indicates the 
diversity of urban functions 
in units.  
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sim(A,B) =
A⋅B

‖A‖‖B‖
=

∑N
i=1AiBi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅( ∑N
i=1A

2
i

)(∑N
i=1B

2
i

)√ (4) 

With similarity scores computed for all pairs of POI classes, we can 
generate a similarity matrix for all POI classes. The similarity between 
the vectors of POI classes from the Doc2Vec model refers to their se-
mantic similarity – they have a similar context in urban space (Mikolov, 
Chen, et al., 2013). The similar pairs of POI classes mean that they tend 

to appear in the city as associated functional use. Based on this under-
standing, we conducted agglomerative hierarchical clustering to further 
explore the similarity scores between all pairs of 574 POI classes in 
Greater London. We chose the hierarchical clustering algorithm because 
this non-flat algorithm provides a sequence of nested relationships be-
tween POI classes and may, therefore, produce meaningful taxonomies. 
In hierarchical clustering, we chose complete linkage (i.e., furthest- 
neighbour linkage) as the metric by which to calculate all pairwise 
dissimilarities between observations in any two groups. As complete 

Fig. 5. Plots of POI class diversity for different analysis units (NaN values excluded).  

Table 2 
Results of indicators measured for six analysis units.  

Units N NNaN POI class diversity POI class richness POI density 

Mean St. Dev. Median Mean St. Dev. Median Mean St. Dev. Median 

GRID200 40,637 9524 1.33 1.01 1.10 8.17 3.00 0.11 0.80 1.83 0.30 
GRID500 6672 423 2.59 1.11 21.47 18.40 16.00 0.42 0.78 1.40 0.36 
GRID1000 1731 52 3.47 1.08 3.83 46.59 29.23 46.00 0.76 1.18 0.45 
OA 25,053 1498 1.57 0.98 1.56 7.92 9.19 5.00 1.37 2.97 0.51 
LSOA 4836 0 3.15 0.61 3.16 27.70 16.42 24.00 1.28 1.74 0.70 
MSOA 983 0 4.22 0.28 4.24 70.44 19.25 69.00 1.25 1.44 0.84  

Fig. 6. Plots of POI density for different analysis units (NaN values excluded).  
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linkage emphasises the maximal inter-cluster dissimilarity, assisting the 
classification of classify POI groups with different functions (James, 
Witten, Hastie, & Tibshirani, 2013b). The result of the clustering can be 
visualised by way of a dendrogram, a tree-based representation. 

4.5. Urban functional areas classification and annotation 

The vectors of LSOAs are used for exploring urban functional areas in 
Greater London. By clustering these vectors referring to the functional 
context in LSOAs, we classify all LSOAs into different groups, which are 
urban functional areas. Here, we use the k-means method to cluster 
LSOAs and choose an external evaluation method, Adjusted Rand Index 
(ARI), to determine the optimal k for the clustering. Researchers often 
utilise ARI to compare the similarity between two clustering types 
(Santos & Embrechts, 2009). This study employed ARI to compare the 
predicted clustering by the k-means algorithm and the ground truth that 
we derived from London Output Area Classification (LOAC). This clas-
sification system for 340 statistical units in Greater London, is founded 
on 60 attributes recorded in the 2011 census at the OA level, indicating 
the social, economic and demographic characteristics of local commu-
nities (Singleton & Longley, 2015). Specifically, we calculated the Rand 
Index (RI) with Eq. (5). 

RI =
TP+ TN

TP+ FP+ TF + FN
=

TP+ TN
C2

N
(5)    

• True positive (TP): two similar POI classes are in the same cluster  
• True negative (TN): two dissimilar POI classes are in different 

clusters  
• False positive (FP): two dissimilar POI classes are in the same cluster  
• False negative (FN): two similar POI classes are in different clusters. 

We then computed ARI with Eqs. (6)–(8), where nij denotes the 
number of times a POI class occurs in cluster i of the POI classification 

scheme and cluster j of k-means clustering; 
(

n
2

)

refers to unordered 

pairs in a set of n elements. The bounded range of the ARI score is [− 1, 
1], where a negative score means independent labelling and a positive 
score represents similar labelling. The random label assignments pro-
duce an ARI score of close to 0. 

ARI =
RI − E[RI]

max(RI) − E[RI]
(6)  

E(RI) = E

(
∑

i,j

(
nij
2

))

=

[
∑

i

(
ni
2

)
∑

j

(
nj
2

)]/(
n
2

)

(7)  

max(RI) =
1
2

[
∑

i

(
ni.
2

)

+
∑

j

(
n,j
2

)]

(8) 

After classifying LSOAs into several groups of functional areas, the 
next step is to interpret these groups. This is necessary because the 
clustering result gives no guarantee regarding on the interpretation of 
functional use in each cluster. Therefore, it is necessary to annotate the 
clusters with latent functions. In this study, we implemented LDA topic 
modelling for clusters separately, in order to extract topics from POI 
sequences. LDA topic modelling is one of the most powerful text mining 
tools for topic extraction from a collection of texts. The LDA model 
regards documents as mixtures of several topics, in which words char-
acterise each topic with certain probabilities (Blei, Ng, & Jordan, 2003). 
Based on this conception, LDA topic modelling can be used for extracting 
the latent functions (topics) with probabilities of POI classes (words) in 
all the clusters identified by k-means. 

We also applied the enrichment factor (EF) to supplement the 
annotation for urban functional areas. EF explores the difference in 
expression of elements between the sample data and background data; it 
is an approach that has been widely adopted in previous studies (Chen 
et al., 2017; Zhai et al., 2019). The metric allows us to aggregate the 
configuration of 574 POI classes at the category level (52 POI cate-
gories), so as to better interpret the urban functions in each cluster. This 
study used EF to calculate the ratio of the proportion of a POI category in 
a cluster to the proportion in the whole city, as shown in Eq. (9): 

EFq
i = (Pq)cluster

/
(Pq)context = (Nq

i /Ni)
/
(Nq/N) (9)  

where Ni
q denotes the number of POIs in category q in the cluster i, Ni 

refers to the number of POIs in cluster i, Nq represents the total number 
of POIs in category q in the city, and N refers to the total number of POIs. 

4.6. Model evaluation 

To better comprehend the performance of the Doc2Vec model in 
delineating urban functional areas, we compared it with other three 
open-source models: TF–IDF, LDA and Word2Vec. We used the features 
output from the above models to train a random forest classifier, and 
compared their accuracy by the out-of-bag scores (James, Witten, Has-
tie, & Tibshirani, 2013a). Random forest is a supervised learning algo-
rithm that consists of multiple decision trees as an ensemble. The 

Fig. 7. Comparison of the training processes using Word2Vec (CBOW) and Doc2Vec (PV-DM).  
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random forest algorithm is a popular classification tool due to its ad-
vantages in reducing the overfitting problem, responding to high- 
dimensional features, and exploring the non-linear correlation be-
tween independent variables (Biau, 2012). The true labels used to train 
the random forest classifier were the super groups identified in the 
LOAC. Table 3 lists the classification scheme comprising eight super 
groups and 19 groups. 

5. Results 

This study implemented the methodology using Python version 3.7 
and PostGIS version 3.0 on Windows 10 (×64). PostGIS was used to 
manage geospatial data and run geoprocessing. The Gensim library for 
Python (https://radimrehurek.com/gensim/) was used to conduct 
Word2Vec, Doc2Vec and LDA models. Scikit-learn library for Python 
(https://scikit-learn.org/) provided codes for machine learning 

algorithms, including TF–IDF, k-means clustering, agglomerative hier-
archical clustering and random forest classification. 

5.1. Functional similarity between POI classes in London 

The Doc2Vec model returned 20-dimensional vectors for 574 POI 
classes and 4836 LSOAs. By calculating the similarity between all pairs 
of POI classes in Greater London, we produced the 574-by-574 similarity 
matrix shown in Fig. 8. Cells in the clustered heat map are coloured with 
the RdBu ramp, based on their similarity score, with a range from − 1 to 
1; red cells indicate high similarity and blue cells denote dissimilarity. 
Along the diagonal, POI classes are grouped into several clusters ac-
cording to the functional similarity. The details of annotation for POI 
classes in each cluster can be found in Supplementary File 1. The 
dendrogram shown at the left of Fig. 8 illustrates the underlying hier-
archical structure of these clusters. We cut off the hierarchical tree with 
eight clusters (coloured in the dendrogram) in order to enable subse-
quent comparison with the nine groups in the original classification 
scheme. The results show that POI classes are not necessarily from the 
same POI category or group. This finding is not surprising, as a mix of 
functional uses is common in metropolitan cities such as London. From 
top to bottom, the eight clusters regarding functional use are: Leisure 
and domestic services; Industrial production, farming and municipal 
facilities; Food & household retail and personal services; Media, finan-
cial and business services; High-end retail, arts and real estate; Enter-
tainment and transport; Public facilities, schools and public areas; 
Educational, government and institutes. 

To further explore the difference between hierarchical clusters based 
on functional similarity and POI classification taxonomy, we reordered 
the index of the same matrix by their PointX classification code defined 
in Appendix A. In Fig. 9, POI classes are sequentially ordered from Group 
01 to Group 10 (see classification code for POI classes on the x-axis). The 
details regarding annotation of the POI classes can be found in Supple-
mentary File 2. Along the diagonal, POI groups can be identified by the 
black frames. We found that POI classes in Groups 02 (Commercial Ser-
vices), 07 (Manufacturing and Production) and 09 (Retail) shared a func-
tional similarity within their groups, while POI classes in other groups 

Table 3 
London Output Area Classification (LOAC): super groups and groups.  

Super group Group 

A: Intermediate Lifestyles A1: Struggling suburbs 
A2: Suburban localities 

B: High Density and High-Rise Flats B1: Disadvantaged diaspora 
B2: Bangladeshi enclaves 
B3: Students and minority mix 

C: Settled Asians C1: Asian owner-occupiers 
C2: Transport service workers 
C3: East-End Asians 
C4: Elderly Asians 

D: Urban Elites D1: Educational advantage 
D2: City central 

E: City Vibe E1: City and student fringe 
E2: Graduation occupation 

F: London Life-Cycle F1: City enclaves 
F2: Affluent suburbs 

G: Multi-Ethnic Suburbs G1: Affordable transitions 
G2: Public sector and service employees 

H: Ageing City Fringe H1: Detached retirement 
H2: Not quite Home Counties 

Source: Singleton and Longley (2015). 

Fig. 8. The clustered heat map of functional similarities between 574 POI classes in Greater London. Each cell in the cluster map refers to the similarity value sim 
(POIi,POIj) calculated by the cosine distance between the characteristic vector trained in the Doc2Vec model. Matrix elements are coloured with the RdBu ramp 
according to the similarity value with a range from − 1 to 1, where red elements indicate high similarity and blue elements show low similarity. The similarity scores 
are clustered by the hierarchical clustering shown as the coloured dendrogram on the left-hand side. The square clusters around the diagonal indicate the clusters of 
POI classes with similar functional use. Names and codes for POI classes are labelled in the axes. (For references to cells in this cluster map, the reader is referred to 
the Appendix B in the web version of this article.) 
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had lower similarity scores within their groups. POI classes in both 
Group 07 (Manufacturing and Production) and Group 09 (Retail) 
demonstrated an overall functional similarity, while those in other 
groups were only partially congregated. Fig. 9 also shows the functional 
similarity between different groups in Greater London. For example, one 
would not expect to see a high similarity score between Group 02 
(Commercial Services) and Group 07 (Manufacturing and Production). The 
results show that only specific commercial services such as construction, 
contract, and engineering services tend to appear around manufacturing 
and production POIs. Similarities also appear in group pairs between 
Groups 07 and 09 (Retail), and between Groups 03 (Attractions) and 04 
(Sport and Entertainment). 

5.2. Urban functional areas in Greater London 

To identify functional areas, we applied k-means clustering to clas-
sify vectors of all 4836 LSOAs in Greater London. In selecting parameter 
k for the algorithm, we used the Adjusted Rand Index to evaluate the 

clustering results by comparing them with super groups in the LOAC 
(James et al., 2013b). Fig. 10 presents the ARI with different numbers of 
clusters k, from 2 to 15. Although k = 6 has the highest ARI, it was 
necessary to examine the optimal number of clusters for the task of 
detecting functional areas. Therefore, we selected another two k with 
high ARI, k = 4 and k = 7, as comparisons. 

Fig. 11 illustrates the clustering result when k = 4, 6 and 7. It is 
apparent that three classifications were successful in identifying the 
central areas of London, which overlap with the Central Activities Zone 
(CAZ) in the city. It is a reasonable result, as the CAZ is the vibrant centre 
hub of London, which is very different from the outer areas in most 
aspects of urban function. However, in the classification with k = 4 
(Fig. 11a), Cluster 0 not only covers the CAZ, but also includes large 
areas such as Wimbledon and Hampstead. Comparing this result with 
the other two, it clearly fails to subdivide the functional areas both in 
inner and outer London. For Fig. 11b (k = 7) and Fig. 11c (k = 6), the 
clustering results were similar. Both classifications subdivide inner 
London (except for the CAZ) into two main functional areas shown as 
yellow- and blue-coloured regions, implying the spatial division be-
tween western and eastern areas. The difference between them is that 
the result for k = 7 (Fig. 11b) further classifies the areas in outer London, 
which is challenging to interpret with the random distribution. Ulti-
mately, we chose six as the optimal k for k-means clustering to aggregate 
all LSOA vectors. 

After classifying the urban functional areas with k-means (k = 6), we 
used LDA topic modelling and enrichment factor explained in Section 
4.5 to annotate these clusters. In order to find the optimal number of 
topics for interpreting each cluster, we utilised the coherence score as 
the indicator. Fig. 12 shows the results of coherence scores against the 
number of topics. Due to the fact that most of the clusters shared one or 
two common topics (i.e., basic urban functions), including the most 
common POI classes such as Hair and Beauty Services, Convenience Stores 
and Independent Supermarkets, Restaurants and Cafes, we chose at least 
three topics so as include more latent topics in the functional areas. By 
looking at the average score of coherence in Fig. 12, we found that 
Cluster 3 has the lowest average score, indicating a heterogeneous 

Fig. 9. The heat map of functional similarities between 574 POI classes in Greater London (re-indexed by classification codes). Each element in the matrix refers to 
the similarity score sim(POIi,POIj) calculated by the cosine distance between the characteristic vector trained in the Doc2Vec model. Matrix elements are coloured 
with the RdBu ramp according to their similarity score with a range from − 1 to 1, where red elements denote high similarity and blue elements indicate low 
similarity. The matrix is sequentially re-indexed according to POI codes from Group 01 to Group 10. Black frames around the diagonal refer to the similarity matrix of 
POI classes from the same POI group. Names and codes for POI classes are labelled in the axes. (For references to cells in this cluster map, the reader is referred to the 
Appendix B in the web version of this article.) 

Fig. 10. Adjusted Rand Index against the number of clusters using k-means.  
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collection of POI classes. Cluster 1 and Cluster 2 both exhibit a higher 
coherence than other clusters. The table of EFs for POI categories 
(Table 4) also served as another reference for the annotation of urban 
functional areas. 

5.2.1. Cluster 0 (affluent neighbourhoods and leisure spaces) 
The spatial distribution of LSOAs in Cluster 0 (shown in Fig. 13a) 

covers the affluent suburbs of Kensington and Chelsea, Hammersmith 
and Fulham, Hampstead, Richmond Upon Thames, Wandsworth and so 
on. Table 5 provides an example of four topics extracted by LDA topic 

modelling where each topic is represented as a latent function by a list of 
weighted POI classes. Topic 1 and Topic 3, both group the POI classes, 
related to essential shops and services for daily life, identifying the 
residential function as the primary purpose in this cluster. Topic 2 in-
cludes a high number of property-related POI classes and associated 
facilities, including Design Services, Architectural and Building-Related 
Consultants, Estate and Property Management, Tennis Facilities and Play-
grounds. Topic 4 includes a series of facilities and services in these 
affluent neighbourhoods, including Tennis Facilities, Nursery Schools and 
Pre and After School Care, Accountants and Auditors, Sports Grounds, 

Fig. 11. Urban functional areas classification with k-means clustering when k = 4, 6, and 7.  
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Stadia and Pitches and Entertainment Services. Table 4 displays a high EF 
for both Outdoor Pursuit and Sports Complex in Cluster 0, indicating that 
leisure and outdoor activities play an important role in LSOAs within 
this cluster. The high EFs for Botanical and Zoological and Tourism reveal 
the popularity of these affluent areas among tourists. 

5.2.2. Cluster 1 (municipal facilities and industrial areas) 
As Fig. 13b illustrates, Cluster 1 covers large areas in outer London. 

The topic extraction identified five topics that can be summarised as 
industrial areas and municipal facilities. One of the topics includes a 
group of municipal facilities such as Sports Grounds, Stadia and Pitches, 
Cemetreies and Crematoria and Waste Storage, Processing and Disposal 
which typically occupy large areas, requiring idiosyncratic site condi-
tions. The presence of industrial areas is evident from the high weights 
for POI classes such as Distribution and Haulage, Container and Storage, 
Import and Export Services, Construction and Tool Hire and Courier, De-
livery and Messenger. The high EFs for a range of manufacturing and 
production POIs (POI category codes 37 to 42) in Table 4 further reveals 
that most of the industrial production is located in this cluster. Air 
transport also emerges as a key function, because the EF for Air, in this 
specific cluster, is the highest among all other scores. Airports such as 
London Heathrow Airport, London City Airport and Royal Air Force 
Northolt are included in this cluster. 

5.2.3. Cluster 2 (suburbs and developing areas) 
LSOAs in Cluster 2 are distributed along the urban fringe, including 

Hillingdon, Enfield, Havering, Bexley, Bromley, Sutton and so on 
(Fig. 13c). The result of topic extraction shows that LSOAs in this cluster 
function as residential areas. In neighbourhoods within this cluster, 
there are more facilities such as Nursing and Residential Care Homes, 
Tennis Facilities and Places of Worship. The results also demonstrate that 
building services such as Building Contractors, Electrical Contractors and 
so on are another significant function within the cluster. The high EF 
(2.064) of Construction Services further confirms this finding. Table 4 also 
shows that Body of Waters, Animal Welfare and Landscape Features are 
uniquely high POI classes in this cluster, compared with the other five 
clusters. This result is not surprising, because the urban fringe in Greater 
London is surrounded by the Green Belt. 

5.2.4. Cluster 3 (vibrant city centre) 
Cluster 3 is predominantly comprises the CAZ, which is the most 

vibrant area of London. The cluster also identifies similar areas outside 
the CAZ, such as Canary Wharf, Richmond and Wimbledon town centre. 
With the lowest average coherence score among all the clusters 
(Fig. 13d), Cluster 3 has a highly mixed use of urban functions, there-
fore, requires more topics to interpret. We selected eight topics with 
which to annotate the cluster and to summarise the main functions of 

tourism, business, commercial and cultural activities. For example, the 
topic of tourism includes POI classes such as Hotels, Motels, Country 
Houses and Inns, B&B Accommodation, and Youth Accommodation. The 
commercial function can be identified from POIs related to high-end 
retail and fashion such as Jewellery, Gems, Clocks and Watches and 
Jewellery and Fashion Accessories. The business function in this cluster is 
diverse, involving the media industry, financial services, legal consul-
tancy, property sales, health services and others. The EF result also re-
veals that POIs in categories such as Accommodation, Employment and 
Career Agencies, Tourism and Clothing and Accessories are representative 
functions in this cluster. The high EF for Venues, Stage and Screen in-
dicates that LSOAs in Cluster 3 also operate as entertainment centres. 

5.2.5. Cluster 4 (local service centres) 
Most of the LSOAs in Cluster 4 are distributed in suburban areas 

surrounded by Cluster 1 and Cluster 2 (see Fig. 11c). The functions in 
this cluster are predominantly local services, including convenience 
stores, retail businesses, and professional support. The high EFs for both 
Clothing and Accessories and Food, Drink and Multi-Item Retail show that 
these LSOAs comprise local retail centres for surrounding neighbour-
hoods. The EF for Central and Local Government in this cluster also in-
dicates that most of the public services and local government offices are 
within these LSOAs. 

5.2.6. Cluster 5 (recreation, education, and organisations) 
The LSOAs in Cluster 5 are mainly distributed in inner London and 

cover regenerated areas such as Hackney, Islington, Wandsworth, 
Lambeth and so on (see Fig. 13f). The results of the topic extraction show 
that recreation and residency are the main functions in this cluster. The 
EF result suggests that Recreational and Sports and Entertainment Support 
Services are representative POI categories in LSOAs from Cluster 5. 
Education-related POIs such as Education Support Services and Primary, 
Secondary and Tertiary Education also play a notable role in these 
neighbourhoods. Charitable Organisations and Headquarters, Administra-
tion and Central Offices also have high weightings in this cluster. 

5.3. The evaluation results 

Table 6 provides the accuracy results of random forest classifiers 
with vectors of LSOAs trained by TF–IDF, LDA, Word2Vec and the model 
proposed herein (Doc2Vec). The TF–IDF model transformed POI classes 
into a sparse matrix of N-gram counts, producing 574-dimensional fea-
tures of documents. The LDA model provided a distribution of 10 topics 
for all LSOAs and represented each LSOA as a vector of topic pro-
portions. The alpha parameter was set as 0.5. The Word2Vec model used 
the same corpus (without LSOA tags) constructed for the Doc2Vec 
model. We ascertained vectors for LSOAs by averaging vectors of POI 
classes within LSOAs, which is the method most commonly utilised in 
previous studies (Yao et al., 2017; Zhai et al., 2019). The dimension of 
vectors in the Word2Vec model was the same as that of the Doc2Vec 
model (20-dimensional). To increase the reliability of the results, we 
iterated the evaluation process 100 times. In each iteration, the dataset 
was randomly split into a training set (70%) and a testing set (30%). The 
result includes out-of-bag (OOB) scores during the training process, and 
Overall Accuracy (OA) and Kappa scores during the predicting process. 
The OA of the proposed model (training process) had a 9.3% higher 
value than that of the TF–IDF model, an 11.5% higher value than that of 
the Word2Vec model, and a 20% higher value than that of the LDA 
model. In the prediction process, the Kappa score of the Doc2Vec model 
was more than 10% higher than those of the other models. The result 
thus demonstrates that the Doc2Vec model outperforms frequency- 
based models, such as TF–IDF and LDA. 

6. Discussion 

The results of calculating the functional similarity between POI 

Fig. 12. Coherence scores against the number of topics in each cluster.  
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classes demonstrates the diverse and mixed configuration of urban 
functional use, as well as revealing the correlation between POI classes 
in Greater London (see Fig. 8). For example, we found that 
entertainment-related POIs have a strong functional similarity with 
transport POIs such as bus stops, subway stations and taxi ranks, and 
that real estate-related POIs are often grouped with high-end retail and 
art shop POIs. By comparing the functional similarity matrix and pre-
defined POI groups in the POI taxonomy, we discovered that only POIs 
in certain groups such as Commercial Services, Manufacturing and Pro-
duction and Retail exhibit high functional similarities within their 
groups, meaning POIs in these groups tend to agglomerate more in the 
city, compared to those in other groups. Differing from the POI cate-
gorisation that classifies POIs by types, the functional similarity matrix 
measured the spatial context of 574 POI classes and revealed how 
different POIs appear in London, alongside local characteristics. 

The classification results illustrated in Fig. 13 identify the city’s 

vibrant areas, not only in the commonly known CAZ, but also in a 
number of central London, such as Canary Wharf, Richmond, and 
Wimbledon, where the results reveal similar functional uses, implying 
that these areas have a similar function as the city’s vibrant centre; 
however, contrary to common perceptions, they are outside of the city’s 
core, which points to a polycentric structure of Greater London. Sur-
rounding central London, there is a spatial division of urban functions 
between Cluster 0 (affluent neighbourhoods and leisure spaces) and 
Cluster 5 (regenerated areas of inner London). Eastern areas of inner 
London predominantly provide functions such as recreation, education, 
and workplaces for organisations, while western London areas such as 
Kensington and Chelsea, Hammersmith and Fulham, Richmond Upon 
Thames and so on contain more affluent residential areas and corre-
sponding leisure facilities. In outer London areas with low POI densities, 
the results also identify three clusters (Clusters 1, 2 and 4) with different 
functions, one of which (Cluster 4) functions as the local service centre. 

Table 4 
Enrichment factor for POI category in each cluster.  

POI category Enrichment factor 

Code Names C0 C1 C2 C3 C4 C5 

01 Accommodation 1.067 0.5 0.391 2.499 0.689 0.666 
02 Eating and Drinking 0.968 0.467 0.787 1.434 1.158 1.137 
03 Construction Services 0.718 1.536 2.064 0.228 0.649 0.72 
04 Consultancies 1.157 0.688 0.751 1.883 0.556 0.905 
05 Employment and Career Agencies 0.707 0.646 0.718 2.126 0.92 0.612 
06 Engineering Services 0.655 1.611 1.315 1.223 0.519 0.502 
07 Contract Services 0.686 1.577 1.023 0.968 0.767 0.951 
08 IT, Advertising, Marketing and Media Services 1.023 0.766 0.655 1.881 0.533 1.114 
09 Legal and Financial 0.708 0.646 0.887 1.481 1.278 0.815 
10 Personal, Consumer and Other Services 1.122 0.599 1.127 0.889 1.176 1.101 
11 Property and Development Services 1.508 0.353 0.797 1.275 1.17 0.931 
12 Recycling Services 0.604 2.308 1.191 0.284 0.728 0.951 
13 Repair and Servicing 0.724 1.822 1.177 0.272 1.091 0.959 
14 Research and Design 1.814 0.766 0.922 1.325 0.336 1.006 
15 Transport, Storage and Delivery 0.677 2.392 0.573 0.554 0.956 0.953 
16 Botanical and Zoological 1.79 1.568 1.305 0.459 0.292 0.829 
17 Historical and Cultural 1.416 0.679 0.973 1.599 0.506 0.816 
18 Recreational 0.786 1.242 0.711 0.249 0.645 2.88 
19 Landscape Features 0.997 1.999 1.703 0.279 0.592 0.399 
20 Tourism 1.782 0.171 0.362 2.597 0.296 0.774 
21 Sport and Entertainment Support Services 1.281 0.883 0.779 1.285 0.475 1.47 
22 Gambling 0.684 0.514 0.893 0.75 1.909 1.182 
23 Outdoor Pursuits 1.929 1.47 1.616 0.358 0.126 0.738 
24 Sports Complex 1.7 1.14 1.688 0.3 0.615 0.684 
25 Venues, Stage and Screen 0.79 0.455 0.756 2.011 0.8 1.031 
26 Animal Welfare 1.527 1.01 2.239 0.143 0.54 0.563 
27 Education Support Services 0.757 0.64 0.609 1.541 1.079 1.344 
28 Health Practitioners and Establishments 1.32 0.57 1.266 0.807 1.106 0.953 
29 Health Support Services 1.145 0.683 1.081 0.965 1.027 1.135 
31 Primary, Secondary and Tertiary Education 1.081 0.975 1.208 0.498 0.954 1.435 
32 Recreational and Vocational Education 1.203 0.877 1.297 0.593 0.927 1.207 
33 Central and Local Government 0.661 0.842 0.76 1.345 1.313 0.951 
34 Infrastructure and Facilities 1.029 1.127 1.251 0.437 1.02 1.243 
35 Organisations 0.871 0.635 0.798 1.522 0.836 1.323 
37 Consumer Products 1.024 1.288 0.971 0.946 0.84 0.965 
38 Extractive Industries 0.457 3.169 0.45 1.279 0.235 0.351 
39 Farming 0.576 3.62 0.8 0.134 0.285 0.768 
40 Foodstuffs 0.555 2.288 0.472 0.757 0.892 1.138 
41 Industrial Features 0.522 3.297 0.558 0.163 0.611 1.069 
42 Industrial Products 0.671 1.976 0.87 0.997 0.649 0.822 
46 Clothing and Accessories 0.986 0.434 0.367 1.96 1.44 0.617 
47 Food, Drink and Multi-Item Retail 0.858 0.738 0.863 0.601 1.689 1.289 
48 Household, Office, Leisure and Garden 1.13 1.04 0.87 0.989 1.143 0.829 
49 Motoring 0.46 2.413 1.225 0.183 1.114 0.545 
53 Air 0.127 5.525 0.453 NA NA NA 
54 Road and Rail 0.844 1.643 1.422 0.507 0.967 0.541 
55 Walking 1.254 1.523 1.494 0.439 0.64 0.713 
56 Water 1.492 2.056 0.709 0.473 0.355 1.273 
67 Public Transport, Stations and Infrastructure 1.085 0.866 0.734 1.304 0.994 1.025 
58 Bodies of Water 1.651 1.683 2.117 0.099 0.222 0.296 
59 Bus Transport 0.97 1.353 1.431 0.381 0.853 1.083 
60 Hire Services 0.645 2.35 0.993 0.495 0.793 0.747 

Top 5 Enrichment factor in each cluster are in bold. 
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The clustering results presented in Table 6 show that the proposed 
Doc2Vec model with POI data can better delineate urban functional use, 
compared with frequency-based models (e.g., TF–IDF and LDA) or other 
neural network embedding models, such as Word2Vec. The Doc2Vec 
model performs better because it directly generates vector 

representations for urban areas from POIs in different classes, whilst 
establishing the spatial context as a part of a vector. 

The results of this study also demonstrate that this enhanced neural 
network embedding model can be used in exploring the functional 
similarity between POI classes, outperforming other commonly used 

Fig. 13. Urban functional areas in Greater London (partial labelled by wards name).  

H. Niu and E.A. Silva                                                                                                                                                                                                                          



Computers, Environment and Urban Systems 88 (2021) 101651

15

language models which utilise POI data to delineate urban functional 
areas across an urban setting. The functional similarity matrix for POI 
classes in Greater London (Fig. 8) illustrates how 574 POI classes con-
nect with each other, based on their spatial context. The hierarchical 
clustering result for vectors of POI classes proves that urban function is 
highly mixed in Greater London, which can be intuitively identified by 
comparison with the POI classification taxonomy (Appendix A). The 
vectorised POIs provide an opportunity for exploring the functional 
similarity between POI classes, while considering the pattern of their 
spatial proximity. It proves the capability of neural network embedding 
to reveal the spatial relationship better than frequency-based models 
can. Although exploring the functional similarity for each pair of POI 
classes is beyond the scope of this study, this result provides a firm 
reference from which to explore how different POI classes group 

together in cities. The other principal result (see Fig. 11c) gives an 
interpretable and reasonable classification of urban functional areas in 
Greater London. 

6.1. Linking previous studies 

In comparison to the existing literature on detecting urban function, 
this study is distinct in two ways. First, it uses POI data to extract urban 
functional use, because this type of data provides the most granular level 
of functional use. The results suggest that POI data reflect more socio- 
economic characteristics of urban land use, rather than the remote 
sensing data used in previous studies (Hu & Wang, 2013; Joshi et al., 
2016; Liu et al., 2017). Regarding studies using social media check-in 
data (Chen et al., 2017; Cranshaw et al., 2012; Gao et al., 2017; Liu 
et al., 2017; Zhang et al., 2019), although they consider the intensity of 
human activity in urban areas, are nonetheless biased due to the digital 
gaps inherent in the datasets used. Furthermore, they are not suitable for 
identifying urban functional use in metropolitan areas, where outer 
areas normally have fewer check-in data. Moreover, as POI data are 
ubiquitous in cities around the world, the transferability and applica-
bility of this present studys method to other urban cases increases 
accordingly. Second, the methodology proposed in this study yielded 
results consistent with other studies (Hu et al., 2020; Yao et al., 2017; 
Zhai et al., 2019) that have argued that the neural word embedding 
method offers greater advantages in learning the spatial contexts of POIs 
and extracting urban functional use than frequency-based methods, such 
as TF–IDF and LDA (Gao et al., 2017; Liu et al., 2017; Yuan et al., 2015). 
This study also demonstrates that the LDA topic model can be useful in 
interpreting urban functions from clustered areas with disaggregated 
POI classes. 

6.2. Potential in urban planning and management 

From the perspective of urban planning and management, the pro-
posed framework has significant potential benefits for different stake-
holders, including both the public and private sectors. First, this study 
proposes a tool for local authorities (i.e., the Greater London Authority) 
to classify urban functional areas efficiently and at different scales, while 
maintaining the capability of sensing functional changes in urban areas 
in a timely manner. For example, in the recently published planning 
reform white paper (Ministry of Housing, Communities, & Local Gov-
ernment, 2020), the UK government proposed that new local plans are 
required to identify three types of land use for urban development in the 
future. As the proposed model in this study uses disaggregated POI data 
with detailed uses of buildings/land, it thereby supports planning au-
thorities in extricating functional uses of urban areas at various scales (e. 
g., blocks, grids, census units or TAZs), furnishing them with an up-to- 
date reference when developing new land-use plans. 

The UK also recently further deregulated planning regulations by 
allowing the conversion of some buildings from one class of use to 
another (e.g., office-to-residential change) without planning permission. 
Although this decision increases the flexibility and adaptability of the 
planning process, thereby helping to resolve issues such as housing 
shortages and a high office-vacancy rate, it undoubtedly makes the 
ability of local authorities to monitor the changes at the micro-level 
more difficult. The lack of planning permission records and the unan-
ticipated cumulative effects thereof, may lead to some negative unin-
tentional consequences, exacerbated by a lack of granular. For example, 
large numbers of office-to-residential conversions, in some communities 
in London, bring with them substantially increased demand for educa-
tion, health care provision, parking, and waste disposal, and other 
associated services; this is because, concordant with the change of oc-
cupants, the functional use of these buildings has dramatically changed 
(Ferm et al., 2020). However, it is difficult for local authorities to plan 
for these additional demands without applications, at least not until the 
demand exceeds the capability of local public services to meet them. To 

Table 5 
An example of topic extraction with LDA for Cluster 0 (20 POI classes in each 
topic).  

Topics Result (top 20 POI classes with weight) 

Topic 
1 

0.065*Hair and Beauty Services + 0.049*Restaurants + 0.046*Property 
Sales + 0.037*Cafes, Snack Bars and Tea Rooms + 0.029*Convenience Stores 
and Independent Supermarkets + 0.029*Bus Stops + 0.026*Clothing +
0.025*Pubs, Bars and Inns + 0.023*Fast Food and Takeaway Outlets +
0.022*Cleaning Services + 0.022*Cash Machines + 0.019*Design Services +
0.013*Alternative, Natural and Complementary + 0.011*Property Letting +
0.010*Architectural and Building-Related Consultants + 0.010*Building 
Contractors + 0.009*Accountants and Auditors + 0.009*DIY and Home 
Improvement + 0.009*Unspecified and Other Attractions + 0.009*Places of 
Worship) 

Topic 
2 

0.061*Bus Stops + 0.047*Design Services + 0.024*Places of Worship +
0.019*Architectural and Building-Related Consultants + 0.018*Photographic 
Services + 0.016*Marketing Services + 0.016*Entertainment Services +
0.016*Computer Systems Services + 0.015*Estate and Property Management 
+ 0.015*Tennis Facilities + 0.014*Alternative, Natural and Complementary 
+ 0.014*Building Contractors + 0.013*Nursery Schools and Pre and After 
School Care + 0.013*Playgrounds + 0.013*Mental Health Centres and 
Practitioners + 0.012*Plumbing and Heating Services + 0.012*Unspecified 
and Other Attractions + 0.012*Business-Related Consultants +
0.012*Property Development Services + 0.012*First, Primary and Infant 
Schools 

Topic 
3 

0.096*Bus Stops + 0.040*Hair and Beauty Services + 0.040*Convenience 
Stores and Independent Supermarkets + 0.034*Unspecified and Other 
Attractions + 0.021*Pubs, Bars and Inns + 0.020*Places of Worship +
0.020*Cleaning Services + 0.019*Property Sales + 0.018*Cash Machines +
0.015*Cafes, Snack Bars and Tea Rooms + 0.014*Restaurants + 0.014*Fast 
Food and Takeaway Outlets + 0.014*Design Services + 0.013*PayPoint 
Locations + 0.013*Ponds + 0.012*Nursing and Residential Care Homes +
0.011*Nursery Schools and Pre and After School Care + 0.011*Estate and 
Property Management + 0.010*Alternative, Natural and Complementary +
0.010*Building Contractors 

Topic 
4 

0.093*Bus Stops + 0.045*Tennis Facilities + 0.028*Nursery Schools and Pre 
and After School Care + 0.023*Accountants and Auditors + 0.022*Hair and 
Beauty Services + 0.019*Places of Worship + 0.018*Unspecified and Other 
Attractions + 0.018*Cafes, Snack Bars and Tea Rooms + 0.018*Cleaning 
Services + 0.017*Convenience Stores and Independent Supermarkets +
0.016*Design Services + 0.015*Pubs, Bars and Inns + 0.014*Building 
Contractors + 0.013*Sports Grounds, Stadia and Pitches + 0.013*Cash 
Machines + 0.013*Business-Related Consultants + 0.013*Vehicle Repair, 
Testing and Servicing + 0.011*Playgrounds + 0.011*Entertainment Services 
+ 0.010*Historic and Ceremonial Structures  

Table 6 
Accuracy assessment of functional area classifications with different language 
models.  

Models Training process Prediction process 

OOB score Overall accuracy Kappa score 

Doc2Vec 0.486 ± 0.0106 0.496 ± 0.0086 0.419 ± 0.0100 
Word2Vec 0.376 ± 0.0097 0.381 ± 0.0084 0.286 ± 0.0097 
TF–IDF 0.370 ± 0.0083 0.403 ± 0.0086 0.310 ± 0.0098 
LDA 0.292 ± 0.0090 0.297 ± 0.0067 0.189 ± 0.0077 

Results for Doc2Vec model are in bold. 
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sense the dynamic change of urban functional use, planning authorities 
can apply the Doc2Vec model to London POI datasets in two successive 
quarters, allowing observations of changes in urban functions by 
comparing the classification results shown in Fig. 11. For example, 
urban areas that are identified as changing from Cluster 3 (vibrant city 
centre, mainly referring to commercial and business functions) to 
Cluster 4 (local service centres providing services for residential areas) 
suggest areas which are being the areas impacted by the office-to- 
residential policy. Accordingly, local authorities can begin to promptly 
plan and implement local policies, such as increasing parking price rates 
or local council taxes, before seeing a sudden increase in the public 
service burden. 

For private sector groups such as developers and real estate agents, 
this framework also has great potential for providing building/land use 
recommendations and selecting locations in terms of functional need. As 
the Doc2Vec model trains vector representations of POI classes from its 
functional context (i.e., co-occurring POI classes in close proximity), in 
practice, it can be utilised to determine the suggested POI classes from 
the context POIs in urban areas, such as high streets, commercial cen-
tres, communities and so on. For example, by identifying many POIs 
(including cafes, restaurants, shoe shops and grocery stores) on a 
segment of a high-street in London, developers could calculate a com-
pound vector by averaging the vectors of those POI classes and 
comparing them with all vectors of POI classes to find functionally 
similar POI classes, which could potentially be added to the high-street. 
This POI recommendation can help developers and real estate managers 
easily recognise suitable POI classes for assigning a new developments 
or new uses of property, in concordance with its functional context. 

The above opportunities in urban planning and management, either 
for the public sector or the private sector, can be realised not just in 
London, but also in other metropolitan cities with highly mixed land use 
(e.g., Shanghai and Hong Kong), and other regions with flexible plan-
ning policies, such as in Australia and New Zealand (Ferm et al., 2020). 
It can help to identify urban functional use from disaggregated and fine- 
scale POIs, and provide a tool with which to track functional changes for 
evaluating and adjusting planning policies. Given the ubiquity and 
accessibility of POI datasets, the framework could be easily applied to 
help reveal the urban functional use and track its dynamics, enabling a 
more enhanced, data-driven support of planning policies. 

6.3. Limitations and future work 

There are some limitations to the application of this model, data sets 
and method. First, this study does not include urban activities as part of 
exploring urban functions (Crooks et al., 2015). The underlying idea of 
using POI data, as with many previous studies, is that the functional use 
derived from POI classes represents the preference of urban activities; 
thus, urban function can be delineated from the POI dataset. This 
assumption risks overlooking the role of human activities in shaping 
urban function. Second, there exists no perfect urban functional use 
dataset for Greater London, by which to evaluate the Doc2Vec model. 
The absence of such data explains why the land-use classification 
(Generalised Land Use Database) in the UK provides only simplified 
classifications (e.g., domestic buildings, non-domestic buildings, roads, 
green space, water and so on) at the regional level, which is insufficient 
as a true indication of granular urban functions, especially in a metro-
politan area. We eventually selected a compound classification (LOAC) 
as the alternative to evaluate the classification of urban functional areas 
in Greater London. The limitations of this dataset go some way to 
explain the overall low accuracy of results for all of the models shown in 
Table 6, albeit the model proposed herein demonstrates an unambigu-
ous advantage over the others. 

It is worth noting that the reliability of the results of the Doc2Vec 
model is dependent on the quality of the POI datasets. Those used in this 
present study are derived from the Ordnance Survey, the national 
mapping service for Great Britain. Previous studies have used datasets 

from map services (e.g., Google Place, Baidu Map and Gaode Map), 
location-based services (e.g., Foursquare and Yelp) or volunteered 
geographic databases (e.g., OpenStreetMap). This dataset provides POIs 
with larger coverage, more precise information and less inaccurate data, 
which helps to comprehensively reveal the different urban functions in 
Greater London. For instance, it records POI classes such as industries, 
farming and infrastructures, which are not normally included in the 
other POI data sources. Therefore, this study could identify functions 
such as municipal facilities and industrial areas in the results for urban 
functional areas, which rendering the classification even more robust. 

The proposed methodology provides remarkable potential for 
exploring cross-sectional and longitudinal urban functions. For devel-
oping a better understanding of the similarities among POI classes, it can 
be used with selected POI datasets for specific locations or local char-
acteristics. For example, by training POIs only from deprived or affluent 
communities (e.g., in accordance with census data) in the city, re-
searchers can evaluate the relationship between POI classes and socio- 
economic characteristics. The results of the classification of urban 
functional areas could also be used to investigate their correlation with 
socio-demographic characteristics, by combining them with census data. 
With updated POI datasets, it would also be possible to develop a tool, 
utilising the Doc2Vec model, to monitor changes of functional use in 
cities. 

7. Conclusion 

This study proposes a framework for implementing the Doc2Vec 
model on POI data. The Doc2Vec model not only vectorises POI classes 
by considering the spatial relationship among POIs in cities, but also 
directly generates vectors representing urban areas; this is something 
which previous studies have not provided. The chosen case study of 
Greater London demonstrates that the vectors of POI classes can be used 
to calculate the functional similarity among POIs, and that Doc2Vec 
model outperforms the TF–IDF, LDA and Word2Vec models in classi-
fying spatial units as functional areas. The framework established in this 
study provides a bottom-up analysis by efficiently inferring urban 
functions from the fine-scale POI uses provided by POI data, with 
assistance from neural network embedding. It allows authorities and 
policymakers to monitor the urban dynamics, especially of metropolitan 
areas with higher mixed land use, which hitherto has been a challenging 
task. Moreover, as ubiquitous POI data becomes more accessible because 
of the diversity of the data sources, the methods employed in this study 
can be applied to a broader array of cases. 

Author agreement statement 

We the undersigned declare that this manuscript is original, has not 
been published before and is not currently being considered for publi-
cation elsewhere. We confirm that the manuscript has been read and 
approved by all named authors and that there are no other persons who 
satisfied the criteria for authorship but are not listed. We further confirm 
that the order of authors listed in the manuscript has been approved by 
all of us. We understand that the Corresponding Author is the sole 
contact for the Editorial process. He is responsible for communicating 
with the other authors about progress, submissions of revisions and final 
approval of proofs. 

Declaration of Competing Interest 

None. 

Acknowledgement 

The authors express thanks for the Ordnance Survey, Great Britain 
for the data used in this work. This research is supported by a scholar-
ship from the China Scholarship Council (CSC No. 201808060346). We 

H. Niu and E.A. Silva                                                                                                                                                                                                                          



Computers, Environment and Urban Systems 88 (2021) 101651

17

thank the anonymous reviewers for their many insightful comments and suggestions.  

Appendix A. POI classification scheme used by the ordnance survey  

POI groups POI categories 

01 Accommodation, eating and drinking 01 Accommodation 
02 Eating and drinking 

02 Commercial services 03 Construction services 
04 Consultancies 
07 Contract services 
05 Employment and career agencies 
06 Engineering services 
60 Hire services 
08 IT, advertising, marketing and media services 
09 Legal and financial 
10 Personal, consumer and other services 
11 Property and development services 
12 Recycling services 
13 Repair and servicing 
14 Research and design 
15 Transport, storage and delivery 

03 Attractions 58 Bodies of water 
16 Botanical and zoological 
17 Historical and cultural 
19 Landscape features 
18 Recreational 
20 Tourism 

04 Sport and entertainment 22 Gambling 
23 Outdoor pursuits 
21 Sport and entertainment support services 
24 Sports complex 
25 Venues, stage and screen 

05 Education and health 26 Animal welfare 
27 Education support services 
28 Health practitioners and establishments 
29 Health support services 
31 Primary, secondary and tertiary education 
32 Recreational and vocational education 

06 Public infrastructure 33 Central and local government 
34 Infrastructure and facilities 
35 Organisations 

07 Manufacturing and production 37 Consumer products 
38 Extractive industries 
39 Farming 
40 Foodstuffs 
41 Industrial features 
42 Industrial products 

09 Retail 46 Clothing and accessories 
47 Food, drink and multi-item retail 
48 Household, office, leisure and garden 
49 Motoring 

10 Transport 53 Air 
59 Bus transport 
57 Public transport, stations and infrastructure 
54 Road and rail 
55 Walking 
56 Water  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compenvurbsys.2021.101651. 
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