eMOTIONAL Cities - Mapping the cities through the senses of those who make them
该项目使用神经词嵌入技术来探索城市兴趣点(POI)数据,尤其是在POI类之间的关系中。 Doc2Vec模型是Google的Quoc V. Le and Tomas Mikolov 开发的一种常见的神经词嵌入模型。该两层神经网络的输入数据是基于大伦敦40万地理分布的POI序列。可以在UKGISR 2020 论文中找到构建POI序列的具体方法。 Doc2Vec模型返回具有固定长度的574个POI类的固定长度矢量(20维)。可以通过向量之间的余弦距离来计算所有POI类对之间的相似度矩阵。为了说明高维矩阵,我们使用TensorFlow嵌入式投影仪进行可视化。您可以通过TensorFlow访问可视化界面,也可以通过下面的嵌入式小部件进行探索。
This project focuses on the crowdsourced data harvesting and data- mining of the multi-dimensional mechanisms of urban segregation combining the geo-coding of information with the rich attributes of this type of data. This project will conduct pilots at Cambridge in the UK and then compare it with prior study of Ningbo in China from an international perspective.